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Abstract —This paper presents an overview of the transmission-line
matrix (TLM) method of analysis, describing its historical background
from Huygens’s principle to modern computer formulations. The basic
algorithm for simulating wave propagation in two- and three-dimensional
transmission-line networks is derived. The introduction of boundaries,
dielectric and magnetic materials, losses, and anisotropy are discussed in
detail. Furthermore, the various sources of error and the limitations of the
method are given, and methods for error correction or reduction, as well as
improvements of numerical efficiency, are discussed. Finally, some typical
applications to microwave problems are presented.

I. INTRODUCTION

EFORE THE ADVENT of digital computers, com-

plicated electromagnetic problems which defied ana-
lytical treatment could only be solved by simulation tech-
niques. In particular, the similarity between the behavior of
electromagnetic fields, and of voltages and currents in
electrical networks, was used extensively during the first
half of the twentieth century to solve high-frequency field
problems [2]-[4].

When modern computers became available, powerful
numerical techniques emerged to predict directly the be-
havior of the field quantities. The great majority of these
methods yield harmonic solutions of Maxwell’s equations
in the space or spectral domain. A notable exception is the
transmission-line matrix (TLM) method of analysis which
represents a true computer simulation of wave propagation
in the time domain.

In this paper, the theoretical foundations of the TLM
method are reviewed, its basic algorithm for simulating the
propagation of waves in unbounded and bounded space is
derived, and it is shown how the eigenfrequencies and field
configurations of resonant structures can be determined
with the Fourier transform. Sources and types of errors are
discussed, and possible pitfalls are pointed out. Then,
various methods of error correction are presented, and the
most significant improvements to the conventional TLM
approach are described. A referenced list of typical appli-
cations of the method is included as well. In the conclu-
sion, the advantages and disadvantages of the method are
summarized, and it is indicated under what circumstances
it is appropriate to select the TLM method rather than
other numerical techniques for solving a particular prob-
lem.

Manuscript received February 22, 1985; revised May 31, 1985.
The author is with the Department of Electrical Engineering, University
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II. HisTorICAL BACKGROUND

Two distinct models describing the phenomenon of light
were developed in the seventeenth century: the corpuscular
model by Isaak Newton and the wave model by Christian
Huygens. At the time of their conception, these models
were considered incompatible. However, modern quantum
physics has demonstrated that light in particular, and
electromagnetic radiation in general, possess both granular
(photons) and wave properties. These aspects are comple-
mentary, and one or the other usually dominates, depend-
ing on the phenomenon under study.

At microwave frequencies, the granular nature of elec-
tromagnetic radiation is not very evident, manifesting itself
only in certain interactions with matter, while the wave
aspect predominates in all situations involving propagation
and scattering. This suggests that the model proposed by
Huygens, and later refined by Fresnel, could form the basis
for a general method of treating microwave propagation
and scattering problems.

Indeed, Johns and Beurle [5] described in 1971 a novel
numerical technique for solving two-dimensional scattering
problems, which was based on Huygens’s model of wave
propagation. Inspired by earlier network simulation tech-
niques [2]-[4], this method employed a Cartesian mesh of
open two-wire transmission lines to simulate two-dimen-
sional propagation of delta function impulses. Subsequent
papers by Johns and Akhtarzad [6]-[16] extended the
method to three dimensions and included the effect of
dielectric loading and losses. Building upon the ground-
work laid by these original authors, other researchers
[17]-[34] added various features and improvements such as
variable mesh size, simplified nodes, error correction tech-
niques, and extension to anisotropic media.

The following section describes briefly the discretized
version of Huygens’s wave model which is suitable for
implementation on a digital computer and forms the al-
gorithm of the TLM method. A detailed description of this
model can be found in a very interesting paper by P. B.
Johns [9].

I

According to Huygens [1], a wavefront consists of a
number of secondary radiators which give rise to spherical
wavelets. The envelope of these wavelets forms a new
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Fig. 1. Huygens’s principle and formation of a wavefront by secondary
wavelets.
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Fig. 2. The discretized Huygens’s wave model (a) in two-dimensional
space and (b) in an equivalent Cartesian mesh of transmission lines
(after Johns [9]).

wavefront which, in turn, gives rise to a new generation of
spherical wavelets, and so on (Fig. 1). In spite of certain
difficulties in the mathematical formulation of this mecha-
nism, its application nevertheless leads to an accurate
description of wave propagation and scattering, as will be
shown below.

In order to implement Huygens’s model on a digital
computer, one must formulate it in discretized form. To
this end, both space and time are represented in terms of
finite, elementary units A/ and A, which are related by the
velocity of light such that

Ar=Al/c. (1)

Accordingly, two-dimensional space is modeled by a
Cartesian matrix of points or nodes, separated by the mesh
parameter Al (see Fig. 2(a)). The unit time Az is then the
time required for an electromagnetic pulse to travel from
one node to the next.

Assume that a delta function impulse is incident upon
one of the nodes from the negative x-direction. The energy
in the pulse is unity. In accordance with Huygen’s princi-
ple, this energy is scattered isotropically in all four direc-
tions, each radiated pulse carrying one fourth of the inci-
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dent energy. The corresponding field quantities must then
be 1/2 in magnitude. Furthermore, the reflection coeffi-
cient “seen” by the incident pulse must be negative in
order to satisfy the requirement of field continuity at the
node.

This model has a network analog in the form of a mesh
of orthogonal transmission lines, or transmission-line ma-
trix (Fig. 2(b)), forming a Cartesian array of shunt nodes
which have the same scattering properties as the nodes in
Fig. 2(a). It can be shown that there is a direct equivalence
between the voltages and currents on the line mesh and the
electric and magnetic fields of Maxwell’s equations [5].

Consider the incidence of a unit Dirac voltage-impulse
on a node in the TLM mesh of Fig. 2(b). Since all four
branches have the same characteristic impedance, the re-
flection coefficient “seen” by the incident impulse is in-
deed —1/2, resulting in a reflected impulse of —0.5 V and
three transmitted impulses of +0.5 V.

The more general case of four impulses being incident
on the four branches of a node can be obtained by super-
position from the previous case. Hence, if at time 7 = k Az,
voltage impulses V7, V,, V4, and [V are incident on
lines 1-4, respectively, on any junction node, then the total
voltage impulse reflected along line n at time (k +1) At
will be

1 4
k+1Vnr=§ ZkVn’t

m=1

=iV

2

This situation is conveniently described by a scattering
matrix equation [7} relating the reflected voltages at time
(k +1) At to the incident voltages at the previous time step
kA

v\ -1 1 1 1 1A%

v, 1 1 -1 1 1 %K

v, 1 1 -1 1 v,
ei1\ Vi 1 1 1 -1 ¥,

&)

Furthermore, any impulse emerging from a node at posi-
tion (z, x) in the mesh (reflected impulse) becomes auto-
matically an incident impulse on the neighboring node.
Hence

keV1(2, %) =41V (2, x = 1)
k13 (2, x) = V(2 =1, x)
k1V3 (2, X) =V (2, x +1)
eV (2, %) = V(2 =1, x). (4)

Consequently, if thé magnitudes, positions, and directions
of all impulses are known at time k Az, the corresponding
values at time (k +1) At can be obtained by operating (3)
and (4) on each node in the network. The impulse response
of the network is then found by initially fixing the magni-
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Fig. 3. Three consecutive scatterings in a two-dimensional TLM net-

work excited by a Dirac impulse.

tudes, directions, and positions of all impulses at =0 and
then calculating the state of the network at successive time
intervals.

The scattering process described above forms the basic
algorithm of the TLM method. Three consecutive scatter-
ings are shown in Fig. 3, visualizing the spreading of the
injected energy across the two-dimensional network.

This sequence of events closely resembles the dis-
turbance of a pond due to a falling drop of water. How-
ever, there is one obvious difference, namely the discrete
nature of the TLM mesh which causes dispersion of the
velocity of the wavefront. In other words, the velocity of a
signal component in the mesh depends on its direction of
propagation as well as on its frequency.

In order to appreciate the importance of this dispersion,
note that the process in Fig. 3 depicts a short episode of
the response of the TLM network to a single impulse which
contains all frequencies. Thus, harmonic solutions to a
problem are obtained from the impulse response via the
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Fig. 4. The building block of the two-dimensional TLM network. (a)
Shunt node. (b) Equivalent lumped-element model.

Fourier transform. Accurate solutions will be obtained
only at frequencies for which the dispersion effect can be
neglected. This aspect will be discussed in Section IV.

The TLM mesh can be extended to three dimensions,
leading to a rather complex network containing series as
well as shunt nodes. Each of the six field components is
simulated by a voltage or a current in that mesh. Three-
dimensional TLM networks will be discussed in Section V.

IV. THE Two-DIMENSIONAL TLM METHOD

A. Wave Properties of the TLM Network

The basic building block of a two-dimensional TLM
network is a shunt node with four sections of transmission
lines of length A//2 (see Fig. 4(a)). Such a configuration
can be approximated by the lumped-element model shown
in Fig. 4(b). Comparing the relations between voltages and
currents in the equivalent circuit with the relations between
the H-, H,-, and E -components of a TE,, wave in a
rectangular waveguide, the following equivalences can be

established [5]:

- Hz = (Ix3 - le)
‘—-HXE(IZZ—IZ‘t) AU‘EL e=2C.

)
For elementary transmission lines in the TLM network,
and for p,=¢,=1, the inductance and capacitance per
unit length are related by

1L/VLC =1/ \fequg =c (6)
where ¢ =3x10% m/s.

Hence, if voltage and current waves on each transmis-
sion-line component travel at the speed of light, the com-
plete network of intersecting transmission lines represents
a medium of relative permittivity twice that of free space.
The means that as long as the equivalent circuit in Fig. 4 is
valid, the propagation velocity in the TLM mesh is 1/v2
the velocity of light.

Note that the dual nature of electric and magnetic fields
also allows us to simulate, for example, the longitudinal
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Fig. 5. Dispersion of the velocity of waves in a two-dimensional TLM

network (after Johns and Beurle [5]).

magnetic field of TE modes by the network voltage, while
the network currents 51mulate the transverse electric-field
components. Whatever the relationship between field and
network variables, the wave properties of the mesh, which.
will be discussed next, remain the same. Considering the
mesh as a periodic structure, Johns and Beurle [5] calculate
the followmg dlspers1on relatlon for propagation along the
main mesh axes:

sin( 8, Al/2) =V2sin[wAl/(2¢)] (7)

where B, is the propagation constant in the network. The
resulting ratio of velocities on the matrix and in free space,
v,/c=w/(B,c), is shown in Fig. 5. It appears that a first
cutoff occurs for Al/A=1/4 (A is the free-space wave-
length). However, no cutoff occurs in the diagonal direc-
tion, where the velocity is frequency-independent, while in
intermediate directions, the velocity ratio lies somewhere
between the two curves shown in Fig. 5.

In conclusion, the TLM network simulates an isotropic
propagating medium only as long as all frequencies are
well below the network cutoff frequency, in which case the
network propagation velocity may be considered constant
and equal to ¢/v2.

B.  Representation of Lossless and Lossy Boundaries

Electric and magnetic walls are represented by short and
open circuits, respectively, at the appropriate positions in

the TLM mesh. To ensure synchronism, they must be

placed halfway between two nodes. In practice, this is
achieved by making the mesh parameter A/ an integer
fraction of the structure dimensions. Curved walls are
represented by piecewise straight boundaries as shown in
Fig. 6.

In the computation, the reflectlon of an impulse at a
magnetic or electric wall is achieved by returning it, after
one unit time step A¢, with equal or opposite sign to its
boundary node of origin.

Lossy boundaries can be represented in the same way as
lossless boundaries, with the difference that the reflection
coefficient in each boundary branch is now

p=(R-1)/(R+1) (8)
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Fig. 6. Representation of boundaries in the TLM mesh. (a) Electric and
magnetic walls. (b) Curved wall represented by a piecewise straight
boundary.
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Fig. 7. Simﬁlatipn of permittivity and losses. (a) Permittivity stub.
(b) Permittivity stub and loss stub.

instead of unity. R is the normahzed surface resistance of
the boundary.

For a good but imperfect conductor of conductivity o,
the reflection coefficient p is approximately

p=—1+2[ew/(20)]" (9)
Note that since p depends on the frequency w, the loss

calculations are accurate only for that frequency which has
been selected in determining p.

C. Representation of Dielectric and Magnetic Materials

The presence of dielectric or magnetic material (for
example, in partial dielectric or magnetic loading of a
waveguide) can be taken into account by loading inside
nodes with reactive stubs of appropriate characteristic im-
pedance and a length equal to half the mesh spacing [7], as
shown in Fig. 7(a). For example, if the network voltage
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Fig. 8. Dispersion of the velocity of waves in a two-dimensional stub-
loaded TLM network with the characteristic admittance of the reactive
stubs as a parameter (after Johns [7]).

simulates an electric field, an open-circuited shunt stub of
length Al/2 will produce the effect of additional capacity
at the nodes. This reduces the phase velocity in the struc-
ture and, at the same time, satisfies the boundary condi-
tions at the air-dielectric interface [7]. At low frequencies,
the velocity of waves in the stub-loaded TLM mesh is given
by

02=05c*/(1+Y,/4) (10)

where c is the free-space velocity, and Y is the characteris-
tic admittance of the stubs, normalized to the admittance
of the main network lines. Note that the velocity in the
network is now made. variable by altering the single con-
stant Y,. The relationship between ¢, of the simulated
space and Y, is

e,=2(1+7Y,/4). (11)

The velocity characteristic along the main axes of the
stub-loaded network is shown in Fig. 8 for various values
of Y, Again, for relatively low frequencies, the mesh
velocity is practically the same in all directions.

In cases where the voltage on the TLM mesh represents
a magnetic field, the open shunt stubs describe a permea-
bility. The velocity of waves in a magnetically loaded
medium will be simulated correctly by such a mesh. How-
ever, the interface conditions are not satisfied, and a cor-
rection must be introduced in the form of local reflection
and transmission coefficients at the interface between the
media, as described in [7].

D. Description of Dielectric Losses

Losses in a dielectric can be accounted for in two
different ways. One can either consider the TLM mesh to
consist of lossy transmission lines, or one can load the
nodes of a lossless mesh with so-called loss-stubs (Fig.
7(b)).

In the first case, the magnitude of each pulse is reduced
by an appropriate amount while traveling from one node
to the next, and the ensuing change in velocity is accounted
for by increasing the time required to reach the next node
[8]. This method is particularly suited for homogeneous
structures.

In the second case, each node is resistively loaded with a
matched transmission line of appropriate chaiacteristic
admittance G,, extracting energy from each node at every
iteration [10]. This technique is more suitable for inhomo-
geneous structures since it describes the interface condi-
tions as well as the loss mechanism.

The normalized admittance of the loss-stub is related to
the conductivity o of the lossy medium by

Go=°Al(ﬂo/‘o)1/2- (12)

E.  Computation of the Frequency Response of a Structure

The previous sections have described how the wave
properties of two-dimensional unbounded and bounded
space can be simulated by a two-dimensional mesh of
transmission lines, and how the impulse response of such a
mesh can be computed by iteration of (3) and (4). Any
node (or several nodes) may be selected as input and /or
output points. The output function is an infinite series of
discrete impulses of varying magnitude, representing the
response of the system to an impulsive excitation (see Fig.
12). The output corresponding to any other input may be
obtained by convolving it with this impulse response.

Of particular interest is the response to a sinusoidal
excitation which is obtained by taking the Fourier trans-
form of the impulse response. Since the latter is a series of
delta functions, the Fourier integral becomes a summation,
and the real and imaginary parts of the output spectrum
are

Re[F(Al/N)] = % Jcos(2mkAl/N)

k=1

(13)
Im[F(Al/N)] = )E JIsin(2ak Al/\) (14)
k=1

where F(Al/A) is the frequency response, , I is the value
of the output response at time t=kAl/c, and N is the
total number of time intervals for which the calculation has
been made, henceforth called the “number of iterations.”

In the case of a closed structure, this frequency response
represents its mode spectrum. A typical example is Fig.
9(a), which shows the cutoff frequencies of the modes in a
WR-90 waveguide.

Note that, as in a real measurement, the position of
input and output points as well as the nature of the field
component under study will affect the magnitudes of the
spectral lines. For example, if input and output nodes are
situated close to a minimum of a particular mode field, the
corresponding eigenfrequency will not appear in the
frequency response. This feature can be used either to
suppress or enhance certain modes.

F.  Computation of Fields and Impedances

Since the network voltages and currents are directly
proportional to field quantities in the simulated structure,
the TLM method also yields the field distribution. In order
to obtain the configuration of a particular mode, its eigen-
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Fig. 9. Typical output from a two-dimensional TLM program. (a) Cutoff
spectrum of a WR-90 waveguide. (b) The same spectrum after convolu-
tion of the output impulse function with a Hanning window (TLM)
mesh: 42 X 92 nodes, 3500 iterations).
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frequency must be computed first. Then the Fourier trans-
form of the network variable representing the desired field

~ component is computed at each node during a second run.
In this process, (13) and (14) are computed for each node,
with Al/N corresponding to the eigenfrequency of the
mode. The field between nodes can be obtained by interpo-
lation techniques.

Impedances can, in turn, be obtained from the field
quantities. Local field impedances can be found directly as
the ratio of voltages and currents at a node, while imped-
ances defined on the basis of particular field integrals (such
as the voltage—power impedance in a waveguide) are com-
puted by stepwise integration of the discrete field values.
This procedure is identical to that used in finite-element
and finite-difference methods of analysis.

V. THE THREE-DIMENSIONAL TLM METHOD

The two-dimensional method described above can be
extended to three dimensions at the expense of increased
complexity [10] to [15]. In order to simultaneously describe
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Fig. 10. The three-dimensional TLM cell featuring three series and
three shunt nodes.

all six field components in three-dimensional space, the
basic shunt node must be replaced by a hybrid TLM cell
consisting of three shunt and three series nodes as shown in
Fig. 10. The side of the cell is Al/2. The voltages at the
three series nodes represent the three electric-field compo-
nents, while the currents at the series nodes represent the
magnetic-field components.

The wave properties of the three-dimensional mesh are
similar to that of its two-dimensional counterpart with the
difference that the low-frequency velocity is now ¢/2 in-
stead of ¢/v2 [15].

Boundaries are simulated by short-circuiting shunt nodes
(electric wall) or open-circuiting shunt nodes (magnetic
wall) situated on a boundary. Wall losses are included by
introducing imperfect reflection coefficients.

Magnetic and dielectric materials may be introduced by
adding short-circuited A//2 series stubs at the series nodes
and open-circuited A//2 shunt stubs at the shunt nodes,
respectively. Furthermore, losses are taken into account by
resistively loading the shunt nodes in the network (see Fig.
11). Even anisotropic materials may be simulated by intro-
ducing at each of the three series or shunt nodes of a cell a
stub with a different characteristic admittance [17]. Finally,
losses as well as permittivities and permeabilities can be
varied in space and in time by controlling the admittances
of the dissipative and reactive stubs. The relationships
between material parameters and stub admittances are the
same as in the two-dimensional case.
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Fig. 11. Simulation of permittivity, permeability, and losses in a three-

dimensional TLM network (after Akhtarzad [13]).

The impulse response of a three-dimensional network is
found in the same way as in the two-dimensional case, and
everything that has been said about the computation of
eigenfrequencies, fields, and impedances, applies here as
well.

VI. ERRORS AND THEIR CORRECTION

Like all other numerical techniques, the TLM method is
subject to various sources of error and must be applied
with caution in order to yield reliable and accurate results.
The main sources of error are due to the following cir-
cumstances:

a) The impulse response must be truncated in time.

b) The propagation velocity in the TLM mesh depends
on the direction of propagation and on the frequency.

¢) The spatial resolution is limited by the finite mesh
size.

d) Boundaries and dielectric interfaces cannot be
aligned in the 3-D TLM model.

The resulting errors will be discussed below, and ways of
eliminating or, at least, significantly reducing these errors
will be described.

A. Truncation Error

The need to truncate the output impulse function leads
to the so-called truncation error: Due to the finite duration
of the impulse response, its Fourier transform is not a line
spectrum but rather a superposition of sin x /x functions
(Gibbs’s phenomenon) which may interfere with each
another such that their maxima are slightly shifted. The
resulting error in the eigenfrequency, or truncation error, is
given by

E.<AS/(Al/X,)=3A_/(SN?7%Al) (15)

where N is the number of iterations and S is the distance
in the frequency domain between two neighboring spectral
peaks (see Fig. 12).

This expression shows that the truncation error decreases
with increasing separation S and increasing number of
iterations N. It is thus desirable to suppress all unwanted
modes close to the desired mode by choosing appropriate
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Fig. 12. (a) Truncated output impulse response and (b) resulting trunca-

tion error in the frequency domain.

input and output points in the TLM network. Another
technique, proposed by Saguet and Pic {20], is to use a
Hanning window in the Fourier transform, resulting in a
considerable attenuation of the sidelobes.

In this process, the output impulse response is first
convolved with the Hanning profile

fo(k)=05(1+cosak/N), k=1,2,3,---,N

(16)
where k is the iteration variable or counter. The filtered
impulse response is then Fourier transformed. The result-
ing improvement can be appreciated by comparing Figs.
9(a) and 9(b).

Finally, the number of iterations may be made very
large, but this leads to increased CPU time. It is recom-
mended that the number of iterations be chosen such that
the truncation error given by (16) is reduced to a fraction
of a percent and can be neglected.

B.  Velocity Error

If the wavelength in the TLM network is large compared
with the network parameter A/, it can be assumed that the
fields propagate with the same velocity in all directions.
However, when the wavelength decreases, the velocity de-
pends on the direction of propagation (see Fig. 5). At first
glance, the resulting velocity error can be reduced only by
choosing a very dense mesh, unless propagation occurs
essentially in an axial direction (e.g., rectangular wave-
guide), in which case the error can be corrected directly
using the dispersion relation (7). Fortunately, the velocity
error responds to the same remedial measures as the coarse-
ness error (which will be described next), and it therefore
does not need to be corrected separately.

C. Coarseness Error

The coarseness error occurs when the TLM mesh is too
coarse to resolve highly nonuniform fields as can be found
at corners and wedges. This error is particularly cumber-
some when analyzing planar structures which contain such
regions. A possible but impractical measure would be to
choose a very fine mesh. However, this would lead to large
memory requirements, particularly for three-dimensional
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Shih and Hoefer [25]).

problems. A better response is to introduce a network of
variable mesh size to provide higher resolution in the
nonuniform field region [27]-[29]. This approach is -de-

scribed in the next section; however, it requires more:

complicated programming. Yet another approach, pro-
posed by Shih and Hoefer [25], is to compute the structure
response several times using coarse meshes of different
mesh parameter A/, and then to extrapolate the obtained
results to A/ = 0 as shown'in Fig. 13.

Both measures effectively reduce the error by one order
of magnitude and simultaneously correct the velocity error.

D.  Misalignment of Dielectric Interfaces and Boundaries in
Three - Dimensional Inhomogeneous Structures

Due to the particular way in which boundaries are
simulated in a three-dimensional TL.M network, dielectric
interfaces appear halfway between nodes, while electric
and magnetic boundaries appear across such nodes. This
can be a problem when simulating planar structures such
as microstrip or finline. In the TLM model, the dielectric
cither protrudes or is undercut by A//2, as shown in Fig.
14. Unless the resulting error is acceptable, one must make
two computations, one with recessed and one with protrud-
ing dielectric, and take the average of the results. The
problem does not occur in a variation of the three-dimen-
sional TLM method involving an alternative node config-
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Fig. 14. Misalignment of conducting boundaries and dielectric inter-
faces in the three-dimensional TLM simulation of planar structures
(after Shih [26]).
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Fig. 15. Two-dimensional TLM network with variable mesh size for the
computation of cutoff frequencies of finlines (after Saguet and Pic [28]).

uration proposed by Saguet and Pic [31], and described in
the next section.

VII. VARIATIONS OF THE TLM METHOD

A number of modifications of the conventional TLM
method have been proposed over the last few years with
the aim of reducing errors, memory requirements, and
CPU time. Some of them have already been mentioned,
such as the introduction of a Hanning window [20], and
extrapolation from coarse mesh calculations [21], [25]. Some
effort has also been directed towards improving the ef-
ficiency of programing techniques [24]

In the following, three other interesting and significant
innovations will be discussed briefly.

A. TLM Networks with Nonuniform Mesh

In order to ensure synchronism, the conventional TIL.M
network uses a uniform mesh parameter throughout. This
can lead to considerable numerical expenditure if the struc-
ture contains sharp corners or. finsproducing highly non-
uniform fields and thus demands a high density mesh.
Saguet and Pic [28] and Al-Mukhtar and Sitch [29] have
independently proposed ways to implement irregularly
graded TLM meshes which; as in the finite-element method,
allow the network to adapt its density to the local nonuni-
formity of the fields. Fig. 15 shows such a network as
proposed by Saguet and Pic [28] for the computation of
cutoff frequencies in a finline. Note, however, that the size
of the mesh cells is not arbitrary as in the case of finite
elements; the length of each side is an odd integer muluple
P of the smallest cell length in the network. To keep the
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Fig. 16. A radial TLM mesh for the treatment of circular ridged wave-
guides (after Al-Mukhtar and Sitch [29]).

velocity of traveling impulses the same in all branches, the
inductivity per unit length of the longer mesh lines is
increased by a factor P while their capacity per unit length
is reduced by 1/P. This, in turn, increases their character-
istic impedance by a factor P, and the scattering matrix of
nodes connecting cells of different size must be modified
accordingly.

To preserve synchronism, impulses traveling on longer
branches are kept in store for P iterations before being
reinjected at the next node.

For the configuration shown in Fig. 15, Saguet and Pic
found that computing time was reduced between 3.5 and 5
times over a uniform mesh, depending on the relative size
of the larger cells.

A different approach has been proposed by Al-Mukhtar
and Sitch [27], [29]. They describe two possible ways to
modify the characteristics of mesh elements in order to
ensure synchronism, one involving the insertion of series
stubs between nodes and loading of nodes by shunt stubs,
the other involving modification of inductivity and capac-
ity per unit length in such a way that propagation velocity
in a branch becomes proportional to its length. The work
by Al-Mukhtar and Sitch also covers the representation of
radial meshes (see Fig. 16) as well as three-dimensional
inhomogeneous structures. They report an economy of 45
percent in computer expenditure for a two-dimensional
ridged waveguide problem, and a 40-percent reduction in
storage and an 80-percent reduction in run time for a
three-dimensional finline problem thanks to mesh grading.

B. A Punctual Node for Three - Dimensional
TLM Networks

Conventional three-dimensional TLM networks require
three shunt and three series nodes for the representation of
one single cell (see Fig. 10). Saguet and Pic [31] have
proposed an alternative method of interconnection. Repre-
sentation of the short transmission-line sections by two
rather than three lumped elements (see Fig. 17) makes it
possible to realize both shunt and series connections in one
point, resulting in a punctual node with 12 branches. This
node is equivalent to a cell, such as that in Fig. 10, in
which the inner connections have been eliminated. Losses
and dielectric or magnetic loading can be simulated with
stubs in the same way as discussed earlier.

This new node representation reduces, according to
Saguet and Pic [31], the computation time by about 30
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Fig. 17. Alternative lumped-element network for the two-dimensional
shunt node. (a) Classical representation. (b) Representation proposed
by Saguet and Pic [31].

(b)

Fig. 18. Alternative network for three-dimensional TLM analysis pro-
posed by Yoshida er al. [33]. (a) Equivalent circuit of an alternative
three-dimensional TLM cell. (b) Definition of gyrators in (a):
1) positive gyrator, 2) negative gyrator.

percent. By employing both the punctual node and variable
mesh size in a three-dimensional program, Saguet [32] has
computed the resonant frequencies of a finline cavity 35
times faster than with a program based on the traditional
TLM method.

C.  Alternative Network Simulating Maxwell’s Equations

Yoshida, Fukai, and Fukuoka [19], [23], [30], [33] have
described a network similar to the TLM mesh, differing
only in the way the basic cell element has been modeled.
Instead of series and shunt nodes, this network contains
so-called electric and magnetic nodes which are both
“shunt-type nodes”: while at the electric node, the voltage
variable represents an electric field, it symbolizes a mag-
netic field at the magnetic node. The resulting ambivalence
in the nature of the network voltage and current must be
removed by inserting gyrators between the two types of
nodes, as shown in Fig. 18. The wave properties of this
network are identical with that of the conventional TLM
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Fig. 19. Basic node of a three-dimensional scalar TLM network (after
Choi and Hoefer [34]).

mesh. Errors and limitations are the same, and so are the
possibilities of introducing losses and isotropic as well as
anisotropic dielectric and magnetic materials.

D.  The Scalar TLM Method

In those cases where electromagnetic fields can be de-
composed into TE and TM modes {or LSE and LSM
modes), it is only necessary to solve the scalar wave equa-
tion. Choi and Hoefer [34] have described a scalar TLM
network to simulate a single field component or a Hertzian
potential in three-dimensional space. The scalar TLM mesh
can be thought of as a two-dimensional network to which
additional transmission lines are connected orthogonally at
each node as shown in Fig. 19. Such a structure could be
realized in the form of a three-dimensional grid of coaxial
lines.

The voltage impulses traveling across such a network
represent the scalar variable to be simulated. Boundary
reflection coefficients depend on both the nature of the
boundary and that of the quantity to be simulated. For
example, impulses will be subject to a reflection coefficient
of —1 at a lossless electric wall if they represent either a
tangential electric- or a normal magnetic-field component.
A normal electric or a tangential magnetic field will be
reflected with a coefficient of +1 in the same cir-
cumstances.

The slow-wave velocity in the three-dimensional scalar
mesh is ¢/V3 as opposed to ¢/2 in the conventional TLM
network. Dielectric or magnetic material as well as losses
may be simulated using reactive and dissipative stubs.

The scalar method requires only 1/4 of the memory
space and is seven times faster than the conventional
method for a commensurate problem. However, its appli-
cation is severely restricted, as it can be applied to scalar
wave problems only.

VIIL

In the previous sections, the flexibility, versatility, and
generality of the transmission-line matrix method has been
demonstrated. In the following, an overview of potential
applications of the method is given, and references describ-
ing specific applications are indicated. This list is not
exhaustive, and many more applications can be found, not
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only in electromagnetism, but also in other fields dealing
with wave phenomena, such as optics and acoustics.

For completeness, it should be mentioned that the TLM
procedure can also be used to model and solve linear and
nonlinear lumped networks [35]-[37] and diffusion prob-
lems [38]. Readers with a special interest in these applica-
tions should consult these references for more details.

Wave problems can be simulated in unbounded and
bounded space, either in the time domain or—via Fourier
analysis—in the frequency domain. Arbitrary homoge-
neous or inhomogeneous structures with anisotropic, space-
and time-dependent electrical properties, including losses,
can be simulated in two and three dimensions.

Below are some typical application examples.

A. Two-Dimensional Scattering Problems in Rectangular
Waveguides (Field Distribution of Propagating and
Evanescent Modes, Wave Impedance, Scattering
Parameters)

Open-circuited rectangular waveguide (TE ) [5].
Bifurcation in rectangular waveguide (TE ;) [5].
Scattering by arbitrarily-shaped two-dimensional
discontinuities in rectangular waveguide (TE ) in-
cluding losses.

B. Two- Dimensional Eigenvalue Problems
(Eigenfrequencies, Mode Fields)

Cutoff frequencies and mode fields in homogeneous
waveguides of arbitrary cross section, such as ridged
waveguides [6], [8], [13], [26], [27].

Cutoff frequencies and mode fields in inhomoge-
neous wavegudies of arbitrary cross section, such as
dielectric loaded waveguides, finlines, image lines
(71, [13], [16], [18], [21}, [22], [25], [26], [28].

C. Three- Dimensional Eigenvalue and Hybrid Field
Problems (Dispersion Characteristics, Wave Impedances,
Losses, Eigenfrequencies, Mode Fields, Q- Factors)
Characteristics of dielectric loaded cavities [10], [13],
[14], [15], [18], [26], [27], [29], [32}], [34].

Dispersion characteristics and scattering in inhomo-
geneous planar transmission-line structures, includ-
ing anisotropic substrate [11], {12], [13}, [14], [17],
[26], [271, [29], [30], [32].

Transient analysis of transmission-line structures
[19}, [23], [33]. !

General-purpose two-dimensional and three-dimensional
TLM programs can be found in Akhtarzad’s Ph.D. thesis
{13]. They can be adapted to most of the applications
described above. If the various improvements and modifi-
cations described in Section VII are implemented in these
programs, versatile and powerful numerical tools for the
solution of complicated field problems are indeed ob-
tained.

IX. DiscussioN AND CONCLUSION

This paper has described the physical principle, the
formulation, and the implementation of the transmission-
line matrix method of analysis. Numerous features and
applications of the method have been discussed, in particu-
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lar the principal sources of error and their correction, the

inclusion of losses, inhomogeneous and anisotropic proper-

ties of materials, and the capability to analyze transient as
well as steady-state wave phenomena.

" A general-purpose two-dimensional TLM program can

be written in about 80 lines of FORTRAN, while a three-

dimensional program is about 110 lines long. [13].

The method is limited only by the amount of memory
storage required, which depends on the complexity of the
structure and the nonuniformity of fields set up in it. In
general, the smallest feature in the structure should at least
contain three nodes for good resolution. The total storage
requirement for a given computation can be determined by
considering that each two-dimensional node requires five
real number storage places, and an additional number
equal to the number of iterations is needed to store the
output impulse function. A basic three-dimensional node
requires twelve number locations; if it is completely
equipped with permittivity, permeability, and loss stubs,
the required number of stores goes up to 26. Again, one
real number must be stored per output function and per
iteration. The number of iterations required varies between
several hundred and several thousand, depending on the
size and complexity of the TLM mesh.

As far as computational expenditure is concerned, the
TLM method compares favorably with finite-element and
finite-difference methods. Its accuracy is even slightly bet-
ter by virtue of the Fourier transform, which ensures that
the field function between nodes is automatically circular
rather than linear as in the two other methods.

The main advantage of the TLM method, however, is the
ease with which even the most complicated structures can
be analyzed. The great flexibility and versatility of the
method reside in the fact that the TLM network incorpo-
rates the properties of the electromagnetic fields and their
interaction with the boundaries and materials. Hence, the
electromagnetic problem need not to be reformulated for
every new structure; its parameters are simply entered into
a general-purpose program in the form of codes for
boundaries, losses, permeability and permittivity, and exci-
tation of the fields. Furthermore, by solving the problem
through simulation of wave propagation in the time do-
main, the solution of large numbers of simultaneous equa-
tions is avoided. There are no problems with convergence,
stability, or spurious solutions.

Another advantage of the TLM method resides in the
large amount of information generated in one single com-
putation. Not only is the impulse response of a structure
obtained, yielding, in turn, its response to any excitation,
but also the characteristics of the dominant and higher
order modes are accessible in the frequency domain through
the Fourier transform.

In order to increase the numerical efficiency and reduce
the various errors associated with the method, more pro-
graming effort must be invested. Such an effort may be
worthwhile when faced with the problem of scattering by a
three-dimensional discontinuity in an inhomogeneous
transmission medium, or when studying the overall electro-
magnetic properties of a monolithic circuit.
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Finally, the TLM method may be adapted to problems
in other areas such as thermodynamics, optics, and acous-
tics. Not only is it a very powerful and versatile numerical
tool, but because of its affinity with the mechanism of
wave propagation, it can provide new insights into the
physical nature and the behavior of electromagnetic waves.
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